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Abstract

We investigate the computational complexity of the task of detecting dense regions of an
unknown distribution from un-labeled samples of this distribution. We introduce a formal
learning model for this task that uses a hypothesis class as its ‘anti-overfitting’ mechanism.

The learning task in our model can be reduced to a combinatorial optimization problem.
We can show that for some constants, depending on the hypothesis class, these problems are
NP-hard to approximate to within these constant factors.

We go on and introduce a new criterion for the success of approximate optimization
geometric problems. The new criterion requires that the algorithm competes with hypotheses
only on the points that are separated by some margin µ from their boundaries.

Quite surprisingly, we discover that for each of the two hypothesis classes that we inves-
tigate, there is a ‘critical value’ of the margin parameter µ. For any value below the critical
value the problems are NP-hard to approximate, while, once this value is exceeded, the
problems become poly-time solvable.

1 Introduction

Un-supervised learning is an important area of practical machine learning. Just the same, the
computational learning theory literature has hardly addressed this issue. Part of this discrepancy
may be due to the fact that there is no formal well defined model that captures the many different
tasks that fall into this category. While the formation of such a comprehensive model may be a
very difficult task, its absence should not deter the COLT community from researching models
that capture restricted subareas of un-supervised learning. In this paper we investigate the
computational complexity aspects of a formal model that addresses one specific task in this
domain.

The model we discuss addresses the problem of locating the densest sub-domains of a distribu-
tion on the basis of seeing random samples generated by that distribution. This is, undoubtedly,
one of the applicable tasks of un-supervised learning.

The scenario that we address is one in which the learner is supposed to infer information
about an unknown distribution from a random sample it generates. An adequate model should
therefore include some mechanism for avoiding over-fitting. That is, the model should impose

1



some restrictions on the class of possible learner’s outputs. The model we propose fixes a
collection of domain subsets (a hypothesis class, if you wish) ahead of seeing the data. The task
of the learner is to find a member of this class in which the average density of the example-
generating distribution is maximized. For simplicity we restrict our attention to the case that
the domain is the Euclidean space <n. Density is defined relative to the Euclidean volume. By
restricting our hypothesis classes to classes in which all the sets have the same volume, we can
ignore the volume issue.

A model similar to ours was introduced by Ben-David and Lindenbaum [3]. In that paper
a somewhat more general learning task is considered: given a threshold r ∈ [0, 1], the learner is
required to output the hypothesis in the class that best approximates the area on which the dis-
tribution has density above r. Ben-David et al. define a notion of a cost of a hypothesis, relative
to a target distribution, and prove (ε, δ) type generalization bounds. As can be expected, the
sample size needed for generalization depends on the VC-dimension of the underlying hypothesis
class. We refer to that paper for a discussion of the relevance and potential applications of the
model. However, [3] does not address the computational complexity of learning in this model.

Standard uniform convergence considerations imply that detecting a hypothesis (domain sub-
set from the hypothesis class) with close-to-maximal density is essentially equivalent to detecting
a hypothesis that approximates the maximal empirical density, with respect to the training data.
We are therefore led to the following, purely combinatorial, problem:

Given a collection H of subsets of some domain set, on input – a finite subset P of
the domain – output a set h ∈ H that maximizes |P ∩ h|.

We consider two hypothesis classes: the class of axis aligned hypercubes and the class of
balls (both in <n). For each of these classes we prove that there exists some γ > 0 (independent
of the input sample size and dimensionality) such that, unless P = NP, no polynomial time
algorithm can output, for every input sample, a hypothesis in the class that has agreement rate
(on the input) within a factor of γ of the optimal hypothesis in the class.

On the other hand, we consider a relaxation of the common success criterion of optimization
or approximation algorithms. Rather than requiring an approximation algorithm to achieve a
fixed success ratio over all inputs (or over all inputs of the same size or dimensionality), we
let the required approximation ratio depend on the structure of each specific input. Given a
hypothesis class H of subsets of ∪n<n, and a parameter µ > 0,

an algorithm solves the µ-relaxed problem associated with H, if, for every input
sample, it outputs a member of H that contains as many sample points as any
member of H can contain with margin ≥ µ (where the margin of a point relative to
a hypothesis is the radius of the largest ball around the point that is fully contained
in the hypothesis).

In other words, such an algorithm is required to output a hypothesis with close-to-optimal
performance on the input data, whenever this input sample allows a maximal intersection (with
a member of H) that achieves large enough margin for most of the points it contains. On the
other hand, if for every element h ∈ H that achieves close-to-maximal-size intersection with the
input a large percentage of the points in the intersection are close to h’s boundaries, then an
algorithm can settle for a relatively poor success ratio without violating the µ-relaxed criterion.
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One appealing feature of this new performance measure is that it provides a rigorous success
guarantee for agnostic learning that may be achieved by efficient algorithms for classes that can’t
have poly-time algorithms that succeed with respect to the common ‘uniform’ approximation
ratio criterion. We shall show below that the class of balls provides such an example, and in a
forthcoming paper [4] we show that the class of linear perceptrons is another such case.

This paper investigates the existence of poly-time algorithms that solve the µ-relaxed problem
associated with a hypothesis class H. Clearly, a relaxation becomes computationally easier as
µ grows, and is hardest for µ = 0, in which case it becomes the usual optimization problem
(without relaxation). As mentioned above, we show that these optimization problems – finding
the densest ball or the densest hypercube – areNP-hard, to approximate (for otherNP-hardness
results of this type see [9], [10]). We are interested in determining the values of µ at which the
NP-hardness of the relaxed problems breaks down.

Quite surprisingly, for each of the classes we investigate (axis-aligned hyper-cubes and balls),
there exists a value µ0 so that, on one hand, for every µ > µ0, there exist efficient algorithms for
the µ-relaxation, while on the other hand, for every µ < µ0 the µ-relaxed problem is NP-hard
(and, in fact, even hard to approximate). A similar phenomenon holds also for the class of linear
perceptrons [4].

The paper is organized as follows: Section 2 introduces the combinatorial optimization prob-
lems that we shall be considering, along with some basic background in hardness-of-approximation
theory. Section 3 discusses the class of hypercubes and provides both the positive algorithmic
result and the negative hardness result for this class. Next we discuss the class of balls. Section
4 contains the hardness result for this class while the following Section 5 provides efficient op-
timization algorithms for the µ-relaxation of the densest ball problem. Finally, in Section 6 we
list several possible extensions of this work.

2 Definitions and Basic Results

In this section we introduce the combinatorial problems that we shall address in the paper.
We then proceed to provide the basic definitions and tools that we shall use from the theory
of approximation of combinatorial optimization problems. We end this section with a list of
previously known hardness-of-approximation results that we shall employ in our work.

2.1 The Combinatorial Optimization Problems

We discuss combinatorial optimization problems of the following type:

The densest set problem for a class H: Given a collection H = ∪∞n=1Hn of subsets, Hn ⊆
2<n

, on input (n, P ), where P is a finite multi-set of points in <n, output a set h ∈ Hn so
that h contains as many points from P as possible (accounting for their multiplicity in P ).

We shall mainly be concerned with the following instantiations of the above problem:

Densest Axis-aligned Cube (DAC) Each class Hn consists of all cubes with side length
equal 1 in <n. That is, each member of Hn is of the form

∏n
i=1 Ii, where the Ii’s are real

intervals of the form Ii = [ai, ai + 1].

Densest Open Ball (DOB) Each class Hn is the class of all open balls of radius 1 in <n.
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Densest Closed Ball (DCB) Each class Hn is the class of all closed balls of radius 1 in <n.

For the sake of our proofs, we shall also address some other optimization problems, namely:

MAX-E2-SAT 1 Input is a collection C of 2-clauses over n Boolean variables. The problem is
to find an assignment a ∈ {0, 1}n satisfying as many 2-clauses of C as possible.

BSH Inputs are of the form (n, P+, P−), where n ≥ 1, and P+, P− are multi-sets of points from
<n. A hyper-plane H(w, t), where w ∈ <n and t ∈ <, correctly classifies p ∈ P+ if wp > t,
and it correctly classifies p ∈ P− if wp < t. The problem is to find the Best Separating
Hyper-plane for P+ and P−, that is, a pair (w, t) ∈ <n × < such that H(w, t) correctly
classifies as many points from P+ ∪ P− as possible.

DOH This is the densest set problem for the class of open hemispheres. That is, inputs are
multi-sets P of points from Sn — the unit sphere in <n — and each class Hn is the class
of all sets of the form {x : wx > 0} for w ∈ <n.

2.2 Basic Notions of Combinatorial Optimization

For each maximization problem Π and each input instance I for Π, optΠ(I) denotes the maxi-
mum profit that can be realized by a legal solution for I. Subscript Π is omitted when this does
not cause confusion. The profit realized by an algorithm A on input instance I is denoted by
A(I). The profit associated with a legal solution σ for input instance I is denoted by |σ|. The
quantity

optΠ(I)−A(I)
optΠ(I)

(1)

is called the relative loss of algorithm A on input instance I. Ideally, the relative loss is not
much bigger than zero.

We generalize the definition above by allowing the performance of the algorithm to be mea-
sured relative to a function other than optΠ. We denote the V -relaxation of Π by Π[V ]. Analo-
gously to (1) above, we define the V -relative loss of an algorithm A as

V (I)−A(I)
V (I)

. (2)

An algorithm A is called δ-approximation algorithm for Π[V ], where δ ∈ <, if its V -relative loss
on I is at most δ for all input instances I. Note that the original problem Π is the same as the
optΠ-relaxation of Π.

Let Π[V ] and Π′[V ′] be two (potentially relaxed) maximization problems. A polynomial
reduction from Π[V ] to Π′[V ′], consists of two functions:

Input Transformation a polynomial time computable mapping I 7→ I ′, which transforms an
input instance I of Π into an input instance I ′ of Π′

Solution Transformation a polynomial time computable mapping (I, σ′) 7→ σ, which trans-
forms (I, σ′), where I is an input instance of Π and σ′ is a legal solution for I ′, into a
legal solution σ for I

1“E2” stands for “Exactly 2 literals per clause”.
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We write Π[V ] ≤pol Π′[V ] to indicate that there exists a polynomial reduction of Π[V ] to Π′[V ].
Given a polynomial time algorithm A′ which finds a legal solution σ′ for each given input
instance I ′ of Π′ and a polynomial reduction from Π to Π′, we obtain the following polynomial
time algorithm A for Π:

1. Compute I ′ from I.

2. Compute a legal solution σ′ for I ′ using A′.

3. Compute a legal solution σ for I from (I, σ′).

We refer to A as the algorithm induced by A′ and the reduction.
In general, a polynomial reduction is not approximation-preserving. Even if A′ is a δ-

approximation algorithm for Π′[V ′], there is in general no upper bound on the V -relative loss
of the induced algorithm A. In this paper, we shall use special reductions which obviously are
approximation-preserving:

Definition 2.1 Assume that Π[V ] ≤pol Π′[V ′]. We say that there is a loss-preserving reduction
of Π[V ] to Π′[V ], written as Π[V ]≤lp

polΠ
′[V ′], if there exists a polynomial reduction that satisfies

the following conditions:

1. The input transformation maps I to I ′ such that V ′(I ′) ≥ V (I).

2. The solution transformation maps (I, σ′) to σ such that |σ| ≥ |σ′|.
The following result motivates the name “loss-preserving”.

Lemma 2.2 If Π[V ]≤lp
polΠ

′[V ′] and there is no polynomial time δ-approximation algorithm for
Π[V ], then there is no polynomial time δ-approximation algorithm for Π′[V ′].

Proof: Assume for sake of contradiction that A′ is a polynomial time δ-approximation algo-
rithm for Π′[V ′]. Let A be the algorithm induced by A′ and and a loss-preserving reduction
of Π[V ] to Π′[V ]. The definition of loss-preserving reductions implies that V ′(I ′) ≥ V (I) and
A(I) ≥ A′(I ′). Thus,

V (I)−A(I)
V (I)

= 1− A(I)
V (I)

≤ 1− A′(I ′)
V ′(I ′) =

V ′(I ′)−A′(I ′)
V ′(I ′) ≤ δ.

We arrived at a contradiction.

2.3 Relaxed Densest Set Problems

As mentioned in the introduction, we shall mainly discuss a new notion of relaxation for densest
set problems. The idea behind this new notion is that the required approximation rate varies
with the structure of the input sample. When there exist optimal solutions that are ‘stable’,
in the sense that minor variations to these solutions will not affect their cost, then we require
a high approximation ratio. On the other hand, when all optimal solutions are ‘unstable’ then
we settle for lower approximation ratios. This idea is formalized by comparing the profit of the
approximation algorithm not to the cost of the optimal solution (i.e., the number of input points
included in the optimal solution), but rather to the number of points from the input that the
optimal solution contains with some margin µ.
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Before we proceed, let us fix some notation. Let n ≥ 1, w, z ∈ <n, t ∈ <, and r ∈ <+.
H(w, t) = {x ∈ <n : wx = t} denotes the hyper-plane induced by w and t. H+(w, t) = {x ∈
<n : wx > t} and H−(w, t) = {x ∈ <n : wx < t} denote the corresponding positive and negative
open half-space, respectively. B(z, r) = {x ∈ <n : ‖z − x‖ < r} denotes the open ball of radius
r around center z. B̄(z, r) = {x ∈ <n : ‖z − x‖ ≤ r} denotes the corresponding closed ball. zn

denotes the all-zeroes vector in <n (the origin). Bn = B(zn, 1) is our short notation for the open
unit ball, B̄n = B̄(zn, 1) denotes the closed unit ball, and Sn = {x ∈ <n : ‖x‖ = 1} denotes the
unit sphere in <n.

Definition 2.3 Let H = ∪n≥1Hn, where Hn ⊆ 2<n
, be a hypothesis class, and let µ > 0 be a

positive real.

• For each h ∈ Hn, let hµ be the set of points that are included in h with a margin µ, i.e.,

hµ 4
=

{
x ∈ <n : B̄(x, µ) ⊆ h

}
.

• Given a finite multiset P ⊂ <n, let

Vµ(n, P )
4
= max

h∈Hn

|P ∩ hµ| .

In other words, Vµ(n, P ) denotes the maximum number of points in P (accounting for their
multiplicity) that can be included in a hypothesis from Hn with margin µ.

• The µ-relaxed densest set problem for H is defined as the Vµ-relaxation of the densest set
problem for H.

We use Π[µ] to denote the µ-relaxation Π[Vµ] of the problem Π.

2.4 Some Known Hardness-of-Approximation Results

We shall base our hardness reductions on two known results.

Theorem 2.4 [H̊astad, [8]] Assuming P 6= NP, for any δ < 1/22, there is no polynomial
time δ-approximation algorithm for MAX-E2-SAT.

Theorem 2.5 [Ben-David, Eiron and Long, [2]] Assuming P 6= NP, for any δ < 3/418,
there is no polynomial time δ-approximation algorithm for BSH.

Claim 2.6 BSH≤lp
polDOH.

Proof: By adding a coordinate one can translate hyper-planes to homogeneous hyper-planes
(i.e., hyper-planes that pass through the origin). To get from the homogeneous hyper-planes
separating problem to the densest hemisphere problem one applies the standard scaling and
reflection tricks.

Corollary 2.7 Assuming P 6= NP, there is no polynomial time δ-approximation algorithm for
DOH, for any δ < 3/418.
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3 The Relaxed Densest Cube Problem

We present a (rather simple) algorithm, Algorithm 3.1 below, which solves the 1/4-relaxation
of the DAC problem in polynomial time. We complement this result by showing that the µ-
relaxation of DAC is NP-hard (and, in fact, even NP-hard to approximate) for each µ < 1/4.
Thus (despite its simplicity), Algorithm 3.1 already solves the hardest relaxation of DAC that
can be solved by any polynomial time algorithm (unless P = NP).

An axis aligned cube with edge length u will be briefly called u-cube in what follows. Let
W be a 1-cube. Note that the points which are contained in W with margin 0 ≤ µ ≤ 1/2 are
contained in a concentric (1− 2µ)-sub-cube of W . (Figure 1 illustrates this observation.)

Recall that the input to DAC has the form (n, P ), where P is a finite multi-set of points from
<n. The legal outputs are the n-dimensional 1-cubes. Recall furthermore that Vµ(n, P ) denotes
the maximal number of points from P (accounting for their multiplicity) that can be included
in a 1-cube with margin µ. According to our observation above, V1/4(n, P ) coincides with the
maximal number of points from P that can be included in a 1/2-cube. In order to solve the
1/4-relaxation of DAC, one has to output a 1-cube containing at least V1/4(n, P ) points. Here
is the algorithm which achieves this goal:

Algorithm 3.1:

1. For each point p in P do:

(a) Let W [p] be the 1-cube with center p.

(b) Compute the “gain” G[p]
4
= |W [p] ∩ P | associated with each p ∈ P .

2. Choose the point pmax such as to maximize G[p] and output W [pmax].

Theorem 3.2 Algorithm 3.1 solves the 1/4-relaxation of DAC and runs in polynomial time.

Proof: Let W∗ be the 1/2-cube which contains V1/4(n, P ) points. Let p∗ be a point from
W∗ ∩ P (arbitrarily chosen). Obviously W [p∗] (the 1-cube with center p∗) contains W∗ as sub-
cube. (Figure 1 illustrates this observation.) Therefore,

G(pmax) = |W [pmax] ∩ P | ≥ |W [p∗] ∩ P | ≥ |W∗ ∩ P | = V1/4(n, P ).

It follows that Algorithm 3.1 solves the 1/4-relaxation of DAC. It clearly runs in polynomial
time.

The next result shows that the 1/4-relaxation of DAC is the hardest relaxation which can
be solved in polynomial time.

Theorem 3.3 For every 0 ≤ µ < 1/4, MAX-E2-SAT≤lp
polDAC[µ].

Proof: Let 0 ≤ µ < 1/4 be fixed. Remember that we can view 1-cubes, containing a set of
points with margin µ, as (1 − 2µ)-cubes containing the same set of points. The point in <n

whose i-th coordinate equals 1− 2µ and whose other coordinates equal zero is denoted by pµ
i in

what follows.
We will define a loss-preserving reduction from MAX-E2-SAT to the µ-relaxation of DAC.

(Compare with Definition 2.1.) The following constructions are illustrated in Figure 2.
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1/4 1/41/2

1

W

W [p∗]

p∗

W∗

Figure 1: A 1-cube W , its concentric 1/2-sub-cube W∗, a point p∗ ∈ W∗, and the 1-cube W [p∗]
centered at p∗.

First, we define a mapping φ from input instances of MAX-E2-SAT (over n variables) to
finite multi-sets in <n. Let v1, . . . , vn be the variables that appear in the propositional formulas,
and let ¬v1, . . . ,¬vn denote their negations, respectively. Let h be the function which maps vi

to pµ
i and ¬vi to −pµ

i . Given a 2-clause l1 ∨ l2, define the point triplet

φ(l1 ∨ l2)
4
= {h(l1) + h(l2),−h(l1) + h(l2), h(l1)− h(l2)}.

Informally, we associate with each 2-clause c three points in the plane spanned by the coordi-
nates that correspond to the variables of c. These three points represent the three satisfying
assignments for c. Finally, we extend the definition of φ from 2-clauses to collections of 2-clauses
by setting

φ(C)
4
=

⋃

c∈C

φ(c),

where the union of sets should be interpreted as multi-set. Obviously, φ(C) can be constructed
from C in polynomial time.

Let a = (a1, . . . , an) ∈ {0, 1}n be an assignment to (v1, . . . , vn) which satisfies the maximal
number, say s∗, of 2-clauses from C. We have to show that there exists a (1− 2µ)-cube which
contains at least s∗ points of the multi-set φ(C). Setting I[0] = [−(1−2µ), 0] and I[1] = [0, 1−2µ],
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the (1 − 2µ)-cube Wa = ×n
i=1I[ai] serves this purpose. More precisely, Wa contains one of the

three points of φ(c) iff a satisfies c. Thus, Wa contains s∗ points of φ(C).
Let now W = ×n

i=1Ii be a 1-cube which contains s points from φ(C). Note that each
cube which contains at least two points of the point triplet φ(c) must have side length at least
2(1 − 2µ) > 1. Thus, W contains at most one point of each triplet. It follows that there
are s “designated” 2-clauses in C with the property that one point of the associated point
triplet belongs to W . Setting ai = 1 if interval Ii contains 1 − 2µ and ai = 0 otherwise, we
obtain an assignment a = (a1, . . . , an) to (v1, . . . , vn) which satisfies precisely the s designated
2-clauses. Clearly, a can be computed from C and W in polynomial time. This completes the
loss-preserving reduction from MAX-E2-SAT to DAC[µ].

v3

v1

v2

Figure 2: The point triplet associated with the 2-clause v1 ∨ ¬v3 in the {v1, v2, v3}-space, the
cube corresponding to the satisfying assignment (v1, v2, v3) = (0, 1, 0), and (at top of it) the
cube corresponding to the falsifying assignment (v1, v2, v3) = (0, 1, 1)

Corollary 3.4 For every 0 ≤ µ < 1/4 and for every 0 ≤ δ < 1/22, there is no polynomial time
δ-approximation algorithm for the µ-relaxation of DAC (unless P = NP).

4 Hardness of the Densest Ball Problem

In this section we prove a hardness-of-approximation result for the DOB problem (Theorem 4.2
below). We refer to H+(w, 0) as an open hemisphere because we use the hyper-plane H(w, 0) as
a separator of the unit sphere Sn into two hemispheres. We may assume that ‖w‖ = 1 because
for all λ > 0, H+(w, 0) = H+(λw, 0).

Lemma 4.1 DOH≤lp
polDOB.
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Proof: Let I = (n, P ) be a given input to DOH, where P is a multi-set of points in Sn. We
choose the trivial input transformation I 7→ I, i.e., I = (n, P ) is also considered as input to
DOB.

Let C(w, P ) be the multi-set of points from P that also belong to H+(w, 0), and let C ′(z, P )
be the multi-set of points from P that also belong to B(z, 1). The reduction from DOH to DOB
is now accomplished by proving the following statements:

∀w ∈ Sn, ∃z ∈ <n : C(w,P ) ⊆ B(z, 1) (3)
∀z ∈ <n : C ′(z, P ) ⊆ H+(z, 0) (4)

These statements certainly imply that there is a loss-preserving reduction from DOH to DOB.
(Compare with Definition 2.1.)

To prove statement (3), we set µ = minp∈C(w,P ) |w · p| . This implies that w · q ≥ µ > 0 for
all q ∈ C(w,P ). We claim that z = µw is an appropriate choice for z, i.e., each q ∈ C(w,P ) also
belongs to B(z, 1). Using w · w = q · q = 1, this claim is evident from the following calculation:

‖z − q‖2 = (z − q) · (z − q)
= z · z − 2z · q + q · q
= µ2w · w − 2µw · q + q · q
= µ2 − 2µw · q + 1
≤ µ2 − 2µ2 + 1
= 1− µ2

< 1

In order to prove statement (4), we have to show that each q ∈ C ′(z, P ) satisfies z · q > 0.
To this end, note first that q ∈ C ′(z, P ) implies q · q = 1 and

1 > ‖z − q‖2 = z · z − 2z · q + q · q = z · z − 2z · q + 1 ≥ −2z · q + 1.

Clearly, this implies that z · q > 0.
Applying Corollary 2.7 we readily get

Theorem 4.2 Assuming P 6= NP, there is no polynomial time δ-approximation algorithm for
DOB, for any δ < 3/418.

As shown in [4], a similar result holds for the Densest Closed Ball problem.

Theorem 4.3 (Ben-David and Simon, [4]) Assuming P 6= NP, there is no polynomial
time δ-approximation algorithm for DCB, for any δ < 1/198.

5 Computation of Dense Balls

We know from Section 4 that it is an NP-hard problem to find an (approximately) densest
(open or closed) ball for a given multi-set of points in <n. In this section, we show that, for
each constant 0 < µ ≤ 1, the µ-relaxation of this problem can be solved optimally in polynomial
time. For the sake of exposition, we restrict the following discussion to closed balls. Also, for
brevity, we use r-ball to refer to a ball with radius r.
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Let B̄ be a 1-ball. Note that the points which are contained in B̄ with margin µ form the
concentric (1 − µ)-sub-ball of B̄. It follows that, an algorithm that solves the µ-relaxation of
DCB on input (n, P ) must output the center of a 1-ball B̄ such that |B̄ ∩ P | ≥ |B̄∗ ∩ P | for
every (1− µ)-ball B̄∗. A simple scaling argument shows that instead of balls with radius 1 and
1− µ, respectively, we may as well consider balls with radius 1

1−µ and 1, respectively. The goal
is therefore to design a family of algorithms which can successfully compete against the densest
closed 1-ball by means of a closed ball of a radius slightly exceeding 1. This general idea is
captured by the following definitions.

Assume that R(k, n) is a function which maps each pair (k, n) to a positive real R(k, n) ∈ <+.
R is called admissible if limk→∞ limn→∞R(k, n) = 0.

A family (Ak)k≥1 of polynomial time algorithms is called R-successful for DCB if, on input
(n, P ), Ak outputs the center of a (1 + R(k, n))-ball B̄ such that |B̄ ∩ P | ≥ |B̄∗ ∩ P | for every
1-ball B̄∗.

Lemma 5.1 If there exists a family of polynomial time algorithms which is R-successful for an
admissible function R, then the µ-relaxation of DCB can be solved in polynomial time for each
µ > 0.

Proof: Let (n, P ) be the input to DCB. Choose k such that R(k, n) ≤ µ
1−µ . This is always

possible, for large enough n, since R is admissible. Define scaling factor

λ
4
=

1
1− µ

= 1 +
µ

1− µ
.

Note that 1 + R(k, n) ≤ λ and 1/λ = 1 − µ. Apply the algorithm Ak (the k-th member of the

R-successful family) to input (n, λ ·P ), where λ ·P 4
= {λ ·p| p ∈ P}. If Ak outputs center z, then

output center 1
λz. Since Ak belongs to an R-successful family, B̄(z, 1+R(k, n)) does not contain

less points from λ · P than any 1-ball. We can make the same claim à-fortiori for B̄(z, λ). It
follows that B̄(z/λ, 1) does not contain less points from P than any (1− µ)-ball.

The main result of this section is:

Theorem 5.2 For each µ > 0, the µ-relaxation of DCB can be solved in polynomial time.

According to Lemma 5.1, the theorem is obtained once we have presented an R-successful
family of polynomial time algorithms for an admissible function R. To this end, we proceed
as follows. In Subsection 5.1, we present a generic family of algorithms for DCB containing
some programmable parameters. The appropriate setting of these parameters requires some
geometric insights which are provided in Subsection 5.2. Three concrete (families of) algorithms
for DCB are analyzed in Subsections 5.3 and 5.4: the Center-of-Gravity algorithm, the Smallest-
Ball algorithm, and the Equal-Distance algorithm. The first algorithm is R1-successful for
R1(k, n) =

√
1/k. The other two algorithms are both R2-successful for R2(k, n) =

√
n−k+1

kn . R1

and R2 are both admissible. Furthermore, R2(k, n) ≤ √
1/k with equality when n approaches

infinity. According to Lemma 5.1, the members of the R1- and R2-successful families solve the µ-
relaxations of DCB. For a given µ, it is sufficient to use an algorithm Ak such that

√
1/k ≤ µ

1−µ .
E.g., k = d1/µ2e is a possible choice.
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5.1 A Generic Algorithm for the Densest Ball Problem

Let Z denote a function which maps finite multi-sets Q of points from <n to points in <n. Let
R denote a function which maps pairs (k, n) to positive reals. Here is the high level description
of our generic algorithm for DCB:

Algorithm 5.3: Let Z, R, k be fixed. Algorithm AZ,R
k proceeds as follows on input (n, P ):

1. For each multi-set Q containing at most k points from P (possibly with repetitions),
compute two quantities associated with Q:

• the “candidate center” Z(Q) ∈ <n,

• the “gain” G(Z(Q))
4
= |P ∩ B̄(Z(Q), 1 + R(k, n))|.

2. Choose Zmax from the candidate centers such as to maximize G(Z) and output Zmax.

Before we present some concrete choices for the functions Z,R, we briefly mention the following
potential simplifications of the generic algorithm:

Fixed Size Multisets (FSM) If the generic algorithm is run in FSM-mode, then we check
only multi-sets Q of fixed size k.

No Repetitions (NR) If the generic algorithm is run in NR-mode, then we consider sets Q
instead of multi-sets.

Here are three concrete choices for the Z- and the R-function, respectively, which will be
analyzed in the course of the next subsections:

Center-of-Gravity (ACG
k ) uses the following functions in the roles of Z and R, respectively:

ZCG(Q)
4
=

1
|Q| ·

∑

q∈Q

q (5)

R1(k, n)
4
=

√
1/k (6)

Smallest-Ball Let ZSB(Q) be the center of the smallest ball containing Q and

R2(k, n)
4
=

√
n− k + 1

kn
(7)

(ASB
k ) uses ZSB and R2 in the roles of Z and R, respectively.

Equal-Distance Let ZED(Q) be the point which has the same Euclidean distance to all q ∈ Q
and belongs to the same affine sub-space as Q. (AED

k ) uses ZED and R2 in the roles of Z
and R, respectively.

ACG
k is run in FSM-mode. ASB

k and AED
k are run in NR-mode.

Here are some brief comments on the computational complexity of these algorithms. Note
first that it is not necessary to evaluate the square root. E.g., in order to check whether a point
x is included in a ball of radius

√
1/k around a center z, one checks whether the square of the

Euclidean distance between x and z (which can be expressed as a scalar product) is bounded

12



by 1/k. Note second that all three algorithms perform an exhaustive search through O(mk)
candidate (multi-)sets. For each fixed (multi-)set, there is a polynomial time bound. ACG

k is the
simplest algorithm, because each center of gravity is found in linear time. In order to find the
center of the smallest ball that contains a given set Q, one has to solve a quadratic programming
problem subject to linear constraints. In order to find AED

k (Q), it is sufficient to solve a system
of linear equations (e.g., by Gaussian elimination) because AED

k (Q) can be expressed as the
intersection of hyper-planes (after a coordinate transformation which maps the points in the
appropriate sub-space). Thus, ASB

k requires more computational resources than AED
k , which, in

turn, requires more computational resources than ACG
k .

All three algorithms share a common property: they are “compatible with translation and
scaling”. More precisely, let

z0 + P
4
= {z0 + p| p ∈ P} and λ · P 4

= {λ · p| p ∈ P}

for each z0 ∈ <n and λ > 0. We say that Z is compatible with translation if equation

Z(n, z0 + P ) = z0 + Z(n, P )

is valid for each choice of n, P, z0. We say that Z is compatible with scaling if equation

Z(n, λ · P ) = λ · Z(n, P )

is valid for each choice of n, P, λ. The following result is fairly obvious:

Lemma 5.4 The functions ZCG, ZSB, and ZED are compatible with translation and scaling.

Algorithms which are compatible with translation and scaling exhibit a nice feature. Their
performance analysis can be restricted w.l.o.g. to “normalized inputs”. More precisely, we say
that an input (n, P ) for DCB is normalized if the following holds:

• The closed unit ball B̄n is a densest closed 1-ball on input (n, P ).

• Each closed ball of radius less than 1 contains less points from P than B̄n.

In other words, the closed unit ball is the (unique) smallest densest ball on input (n, P ). The
following result is obvious:

Lemma 5.5 Let (Ak) be a family of algorithms for DCB which is compatible with translation
and scaling. If (Ak) is R-successful on each normalized input, then (Ak) is R-successful (on each
input).

5.2 Full and Partial Spanning Sets for Smallest Balls

Let B be an open n-dimensional ball and B̄ the corresponding closed ball. The center of B is
denoted as zB. The boundary of B̄, called B-sphere hereafter, is denoted as SB. Each hyper-
plane H partitions <n into the three sets H+,H− (the open half-spaces induced by H) and
H itself. Each hyper-plane H which passes through zB cuts the B-sphere SB into two open
B-hemispheres, namely SB ∩ H+ and SB ∩ H−. Let P ⊆ <n. The following lemma presents
necessary and sufficient conditions for B̄ being the smallest ball containing P .

Lemma 5.6 Assume that P is contained in B̄. The following statements are equivalent:

13



A1 B̄ is the smallest ball containing P .

A2 The points in P ∩ SB are not contained in any open B-hemisphere.

A3 The convex hull K of P ∩ SB contains zB.

Proof: Let ¬A1,¬A2,¬A3 denote the negations of the statements A1, A2, A3, respectively.
We will prove the implications ¬A3 ⇒ ¬A2, ¬A2 ⇒ ¬A1, and A3 ⇒ A1.

Let us start with the implication ¬A3 ⇒ ¬A2. Assume that K does not contain zB. W.l.o.g.
K 6= ∅ (because otherwise P ∩ SB = ∅ and ¬A2 trivially holds). The following reasoning is
illustrated in Figure 3. Let p be the point in K with a minimal distance d > 0 to zB, Lp the
line segment from zB to p, and Hp the hyper-plane through p that is orthogonal to Lp. The fact
that K is a convex polyhedron and the choice of p imply that Hp does not intersect the interior
of K. If H ′

p denotes the hyper-plane that is parallel to Hp and passes through zB (obtained by a
parallel shift of Hp along Lp), then K is totally contained in one of the open half-spaces induced
by H ′

p. The points in P ∩SB are therefore contained in one of the open B-hemispheres induced
by H ′

p.
We proceed with the proof for the implication ¬A2 ⇒ ¬A1. The following reasoning is

illustrated in Figure 3. Assume that H is a hyper-plane through zB such that the points in
P ∩ SB are contained in one of the open B-hemispheres induced by H. Let R be the ray that
starts in zB and is directed orthogonally away from H towards the hemisphere containing P∩SB.
Let Bε be the open ball obtained from B by performing an ε-shift of center zB along R. It follows
that there exists an ε > 0 such that Bε contains P . Since Bε is open, it can be shrunken and
still contain P . It follows that B̄ is not the smallest ball containing P .

We finally show the implication A3 ⇒ A1. Assume that zB ∈ K. The following reasoning
is illustrated in Figure 4. Let B′ be a ball with center zB′ such that zB′ 6= zB and P ⊆ B̄′.
We have to show that the radius r′ of B′ is greater than the radius r of B. Let L be the line
segment from zB to zB′ . Let H be the hyper-plane through zB which is orthogonal to L, H+

the open half-space containing zB′ and H− the other open half-space. Since zB ∈ K, H− must
contain at least one point p of P ∩ SB. When we move a point z along L from zB to zB′ , its
distance to p strictly increases. Since the distance between zB and p coincides with r and the
distance between zB′ and p is a lower bound on r′, we get r′ > r.

Let Q ⊂ <n be a set of points in general position. It follows that |Q| ≤ n + 1. The convex
hull of Q is then called the simplex induced by Q and denoted as S(Q). Occasionally, we will
blur the distinction between Q and the induced simplex and use the notation Q for both objects.
Remember that each polyhedron in <n can be partitioned into simplexes (which corresponds to
a triangulation of a polygon in the plane). The following definition relates simplexes to balls:

Definition 5.7 Let B̄ be a ball in <n and Q ⊂ <n be a set of points in general position. Q is
called spanning set for B̄ if Q ⊂ SB and zB ∈ S(Q). A spanning set for an n-dimensional ball
is called degenerated if it contains at most n points.

The following results are (more or less) immediate consequences of Lemma 5.6.

Corollary 5.8 If Q is a spanning set for B̄, then ZSB(Q) = ZED(Q) = zB.

Figure 5 illustrates Corollary 5.8.

Corollary 5.9 Let B̄ be the smallest n-dimensional ball containing a finite set P of points from
<n. Then P ∩ SB contains a spanning set Q for B̄.
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Figure 3: A non-smallest ball containing a given set of points.
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Figure 4: A smallest ball containing a given set of points.
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(a) (b)

zBzB

Figure 5: (a) A 2-dimensional example: a spanning set Q of size 3 for a 2-dimensional ball B̄.
(b) A 3-dimensional example: a degenerated spanning set Q of size 3 for a 3-dimensional ball
B̄. In both cases, zB = ZSB(Q) = ZED(Q).

Proof: According to Lemma 5.6, the convex hull K of P ∩ SB contains zB. Form a simplicial
decomposition of the polyhedron K. One of the simplexes in this decomposition, say S, must
contain zB. It follows that the vertex set Q of S is a spanning set for B̄.

Let us briefly explain how we will use the concept of spanning sets. Remember that we
can restrict ourselves to a normalized input (n, P ), whose smallest densest ball is the unit ball
B̄n. According to Corollary 5.9, P ∩ Sn contains a spanning set Qn for B̄n. Remember that
|Qn| ≤ n+1. We want to argue that the generic algorithm AZ,R

k computes at least one candidate
center Z(Q) that is close to the origin zn. Note that ZSB(Qn) = ZED(Qn) = zn. Thus, the
Smallest-Ball and the Equal-Distance algorithms would both find the optimal center if they
inspected the full spanning set Qn. However, the generic algorithm inspects only (multi-)sets
Q of size at most k, and k is much smaller than n in general. The hope is that Qn contains a
small subset Q such that Z(Q) comes already close to the origin. This motivates the following
definition.

Definition 5.10 Let R be a function which maps a pair (k, n) to a positive real R(k, n) ∈ <+.
We say that function Z is an R-approximator if the following holds:

• Z is compatible with translation and scaling.

• For each k ≥ 1, for each normalized input (n, P ), and for each spanning set Qn for B̄n,
there exists a multi-set2 Q ⊆ Qn of size at most3 k such that ‖Z(Q) − zn‖ = ‖Z(Q)‖ ≤
R(k, n).

The following meta-result is fairly obvious from the above discussions:

Lemma 5.11 If Z is an R′-approximator and R′(k, n) ≤ R(k, n) for each pair (k, n), then
(AZ,R

k ) is R-successful.
2Replace “multi-set” by “set” if the generic algorithm is run in NR-mode.
3Replace “at most” by “exactly” if the generic algorithm is run in FSM-mode.
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Let us briefly summarize what we have achieved so far. Setting R′ = R, Lemma 5.11 implies
that a Z-function which is an R-approximator leads to an instantiation (AZ,R

k ) of the generic
algorithm that is R-successful. Lemma 5.1 states that an R-successful family of algorithms (for
an admissible function R) can be used to solve the µ-relaxation of DCB in polynomial time
(for each µ > 0). In order to prove the main result of this section, Theorem 5.2, it is sufficient
to analyze the functions ZCG, ZSB, ZED and to prove that each of them is an R-approximator
for some admissible function R. This is exactly what we will do in the course of the next two
subsections.

5.3 The Center-of-Gravity Algorithm

The analysis of the Center-of-Gravity algorithm builds on Theorem 5.12, which is attributed to
Maurey [7]. A proof for this theorem can be found in [11, 5] or in [1].

Theorem 5.12 (Maurey, [1]) Let F be a vector space with a scalar product (·, ·) and let ‖f‖ 4=√
(f, f) be the induced norm on F . Suppose G ⊆ F and that, for some c > 0, ‖g‖ ≤ c for all

g ∈ G. Then for all f from the convex hull of G and all k ≥ 1 the following holds:

inf
g1,...,gk∈G

∥∥∥∥∥
1
k

k∑

i=1

gi − f

∥∥∥∥∥ ≤
√

c2 − ‖f‖2

k
.

The proof makes use of the probabilistic method. It is essential for the validity of the theorem
that the elements g1, . . . , gk taken from G in the inf-expression are not necessarily different.

Corollary 5.13 ZCG is a
√

1/k-approximator.

Proof: We apply Theorem 5.12 to the following special situation:

• F = <n with the standard scalar product. The induced norm is the Euclidean norm.

• G = Qn, where Qn is a spanning set for the unit ball B̄n. Remember that |Qn| ≤ n + 1
and all points of Qn reside on the unit sphere Sn. Moreover, the convex hull of Qn is the
simplex induced by Qn, which contains the center zn of B̄n (the origin).

• Choose f = zn (the origin). It follows that ‖f‖ = 0. Since G = Qn ⊂ Sn, the bound c in
Theorem 5.12 can be safely set to 1 in our particular application. Thus the upper bound
given in the theorem simplifies to

√
1/k.

It follows from this discussion that there exist points g1, . . . , gk taken from Qn (possibly with
repetitions) such that their center of gravity has distance at most

√
1/k from the origin. Thus,

ZCG is a
√

1/k-approximator.

5.4 The Smallest-Ball and the Equal-Distance Algorithm

Throughout this subsection, Qn denotes a spanning set for the closed unit ball B̄n. Remember
that Qn consists of (at most n + 1) points in general position that reside on the unit sphere Sn.
The simplex S(Qn) induced by Qn contains the origin zn. By abuse of notation, we will identify
Qn with S(Qn).
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Each subset Q of Qn of size k induces the sub-simplex of Qn with vertex set Q, briefly called
a k-sub-simplex hereafter. Again, we identify Q with the induced k-sub-simplex. An n-sub-
simplex is called a face, a 2-sub-simplex is called an edge, and a 1-sub-simplex is called a vertex
of the simplex Qn.

Let Q be a face of Qn and HQ its supporting hyper-plane. Note that the intersection of HQ

and B̄n is a closed (n− 1)-dimensional ball, say B̄Q. Its center and its boundary are denoted as
zQ and SQ, respectively. Note that Q is contained in SQ, but is not necessarily a spanning set
for B̄Q. We say that Q is a central face of Qn if Q minimizes the distance between zQ and zn.4

For such faces, the following holds:

Lemma 5.14 Each central face Q of Qn is a spanning set for B̄Q.

Proof: Figure 6 shows the simplex Qn with a face Q which is not a spanning set for B̄Q.
Clearly, zQ is the projection of zn onto HQ. Since zQ does not belong to the face Q, the line
connecting zn and zQ penetrates another face. It follows that the center of the penetrated face
is closer to the origin zn than zQ. Thus, Q is not a central face.

B̄Q

Q

zn

zQ

Figure 6: A non-degenerated spanning set Q3 for B̄3 with a face Q that is not a spanning set
for the corresponding sub-ball B̄Q.

These considerations can easily be generalized from faces to arbitrary sub-simplexes. We
first generalize the notion of central faces by means of downward induction:

• The notion of a central n-sub-simplex of Qn has already been defined (because a central
n-sub-simplex is a central face).

4Since zn is the all-zeroes vector, this distance coincides with ‖zQ‖.
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• A k-sub-simplex of Qn is called central if it is the central face of a central (k + 1)-sub-
simplex of Qn.

Let Q be a k-sub-simplex of Qn, and let UQ be the (k − 1)-dimensional affine sub-space of <n

that contains Q. The intersection of UQ and B̄n is a closed (k − 1)-dimensional ball, say B̄Q.
Its center and its boundary are denoted as zQ and SQ, respectively. Q is contained in SQ, but
is not necessarily a spanning set for B̄Q. The following result easily follows by induction:

Lemma 5.15 Each central k-sub-simplex Q of Qn is a spanning set for B̄Q.

Note furthermore that there exists at least one central k-sub-simplex Q of Qn for all k = 0, . . . , n.
Assume that Q is a k-sub-simplex of Qn which is a spanning set for B̄Q. From Corollary 5.8,

we know that ZSB(Q) = ZED(Q) = zQ. According to Lemma 5.15, this equality holds in
particular for each central k-sub-simplex. The analysis of the Smallest-Ball and the Equal-
Distance algorithm is based on the following

Lemma 5.16 Let Q be a central k-sub-simplex of Qn. Then ‖zQ‖ ≤ R2(k, n), where R2(k, n)
is the function given by equation (7).

Lemma 5.16, whose (somewhat lengthy) proof is given in the appendix, basically concludes the
analysis of the Smallest-Ball and the Equal-Distance algorithm:

Corollary 5.17 ZSB and ZED are both R2-approximators.

Proof: Let Qn be a spanning set for B̄n. Let Q be a central k-sub-simplex of Qn. According
to Lemma 5.15, Q is a spanning set for B̄Q. It follows that ZSB(Q) = ZED(Q) = zQ. According
to Lemma 5.16, ‖zQ‖ ≤ R2(k, n).

6 Conclusions

We briefly mention some possible extensions of our work and some open questions:

• All hardness results presented in this paper remain true when we disallow multi-sets and
consider only points of “multiplicity” 1. The proofs would become technically more in-
volved5 (without providing much more insight).

• The notion of µ-relaxation can be generalized (in the obvious fashion) from a constant µ
to a function µ in parameters n (the dimension) or m (the number of points in the input
instance).

• It can be shown [4] that the
√

1/(45n)-relaxation of DOH and the 1/(90n)-relaxation of
DOB (or DCB) are NP-hard (and, in fact, even NP-hard to approximate). On the other
hand, we have shown in this paper that the µ-relaxation of these problems can be solved
in polynomial time for each constant µ > 0. These results leave open the computational
complexity of the µ-relaxation of DOH (or DOB,DCB, respectively), when µ = µ(n)
approaches zero asymptotically slower than

√
1/n (or 1/n, respectively).

5Basically, an input point with multiplicity j must be replaced by j different points with approximately the
same location in <n.
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• The NP-hardness of the 1/(90n)-relaxation of DCB shows that we cannot expect an R-
successful algorithm for DCB — for an admissible function R = R(k, n) — with a poly-
nomial time bound in k. However, the time bound O(mk)poly(n,m) achieved by our
algorithms ACG, ASB, AED might be improved to time bounds of the form f(k)poly(n,m)
for some function f . In the parameterized complexity framework [6], this is the question
of whether the (1/k)-relaxation of DCB is fixed-parameter tractable.

• In this paper, we investigated the problem of maximizing the empirical density (as opposed
to the true density w.r.t. an input generating distribution). From this purely combinatorial
perspective, the Center-of-Gravity algorithm is almost as successful as the (computation-
ally more expansive) Equal-Distance algorithm (not to speak of the even more expansive
Smallest-Ball algorithm). We expect however AED and ASB to exhibit a superior statistical
generalization. The validation of this claim will be the subject of future research.
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A Proof of Lemma 5.16

Remember that Qn denotes a spanning set for the unit ball B̄n. Let Q be a central k-sub-simplex
of Qn. Remember that the intersection of B̄n with the lowest dimensional affine sub-space of
<n that contains Q yields a (k − 1)-dimensional ball BQ with center zQ. We have to show that
‖zQ‖ ≤ R2(k, n), where R2 is the function given by equation (7).

If Qn is a degenerated spanning set for B̄n, then it is a non-degenerated spanning set for a
lower-dimensional unit ball, say for B̄n′ such that n′ < n. Since R2(k, n′) < R2(k, n) if n′ < n,
we may restrict ourselves to the non-degenerated case in what follows. Thus, Qn consists of n+1
vertices, say q0, . . . , qn, that are in general position and reside on the unit sphere Sn. Viewed as
simplex, Qn contains the origin.

We apply induction on n + 1 − k. The case k = n + 1 (induction base) is trivial. The
only (n + 1)-sub-simplex of Qn is Qn itself. Thus zQ coincides with the origin zn. Therefore,
‖zQ‖ = ‖zn‖ = 0 = R2(k, n + 1). The following result covers the case k = n.

Lemma A.1 Let Q be a central face of Qn. Then, ‖zQ‖ ≤ 1/n.

Proof: We will derive several formulas for the (n-dimensional) volume V of the simplex Qn

(in terms of ‖zQ‖ and some other parameters) which algebraically imply that ‖zQ‖ ≤ 1/n.
Let Qi = Qn \ {qi}. Remember that, by abuse of notation, Qi denotes also the face induced

by the vertices of Qn \{qi}. Let Vi denote the ((n−1)-dimensional) volume of Qi. Let Q′
i be the

simplex that is obtained from Qn when we replace vertex qi by the origin, and let V ′i denote the
(n-dimensional) volume of Q′

i. Let finally hi denote the distance between vertex qi and face Qi

(i.e., the height of Qn when viewed as simplex on top of face Qi), and let ri denote the distance
between the origin and Qi (i.e., the height of Q′

i when viewed as simplex on top of face Qi). An
illustration of these notations may be found in Figure 7. Note that

‖zQ‖ = min
i=0,...,n

ri (8)

because Q is a central face.
We proceed with the following auxiliary result:

Claim A.2 For all i = 0, . . . , n: hi ≤ 1 + ri.

Proof of the Claim: Let zi be the projection of the origin to face Qi. Clearly, hi is not
greater than the distance from qi to zi, i.e., hi ≤ ‖zi − qi‖. As a vertex of Qn, qi has distance
1 from the origin, and (by definition of ri) the origin has distance ri to zi. Using the triangle
inequality, we conclude that hi ≤ ‖zi − qi‖ ≤ 1 + ri.

We are now prepared to derive various formulas for V. Remember that the n-dimensional
volume of a simplex in <n, viewed as simplex of height h∗ on top of a face Q∗ with (n − 1)-
dimensional volume V∗, is given by h∗V∗/n. In combination with Claim A.2, we get

V =
hiVi

n
≤ (1 + ri)Vi

n
. (9)

Summing over all i, we obtain

(n + 1)V = 1
n(h0V0 + · · ·+ hnVn) ≤ 1

n ((1 + r0)V0 + · · ·+ (1 + rn)Vn) . (10)
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Figure 7: A non-degenerated spanning set Q3 and the decomposition of the corresponding
simplex into sub-simplexes. The serpentine lines indicate segments of length 1.

Since Qn partitions into Q′
0, . . . , Q

′
n (up to an overlap of n-dimensional volume zero), we may

alternatively write V as follows:

V = V ′0 + · · ·+ V ′n =
1
n

(r0V0 + · · ·+ rnVn) (11)

Subtracting (11) from (10), we get

nV ≤ 1
n

(V0 + · · ·+ Vn) =
O
n

, (12)

where O = V0 + · · ·+Vn is the ((n− 1)-dimensional) volume of the surface of Qn. Dividing (11)
by (12), we obtain

1
n
≥ V0

O · r0 + · · ·+ Vn

O · rn. (13)

Note that the right hand of this inequality is a convex combination of r0, . . . , rn and therefore
lower-bounded by mini=0,...,n ri = ‖zQ‖. This completes the proof of Lemma A.1.

As a marginal note, we would like to mention that (12) implies that V/O ≤ 1/n2. Quantity
1/n2 is precisely the volume-surface ratio of the regular simplex6 with n + 1 vertices residing on
the unit sphere Sn. (Figure 8 shows the regular simplexes in <2 and <3, respectively.) We have
therefore accidentally proven that regular simplexes (with vertices residing on the unit sphere)
achieve the highest volume-surface ratio (among all simplexes whose vertices reside on the unit
sphere).

We are now prepared to perform the inductive step. Let Q = Qk−1 be a central k-sub-simplex
of Qn for some k < n. It follows that there is a chain

Qk−1 ⊂ · · · ⊂ Qn−1 ⊂ Qn,
6A simplex is called regular if all of its edges have the same length. By symmetry, the vertices of each regular

simplex reside on the boundary of a ball around their center of gravity. The regular simplex is unique up to
translation, rotation and scaling.
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(a) (b)

Figure 8: (a) A regular simplex with 3 vertices. (b) A regular simplex with 4 vertices.

such that Qj is a (j +1)-sub-simplex of Qn for j = k− 1, . . . , n, and Qj is a central face of Qj+1

for j = k − 1, . . . , n − 1. We denote the sub-ball of B̄n, obtained by intersecting B̄n with the
lowest-dimensional affine sub-space containing Qj , as B̄(zj , rj). Here, zj is the center of this
sub-ball and rj is the radius. Note that zn coincides with zn (the origin) and rn = 1. Since
zn−1 = zQn−1 and Qn−1 is a central face of Qn, Lemma A.1 yields

‖zn − zn−1‖ = ‖zn−1‖ ≤ 1/n. (14)

Furthermore, zk−1 = zQ. We define R(k, j)
4
= ‖zj − zk−1‖ for j = k − 1, . . . , n. Note that

R(k, k − 1) = 0 and R(k, n) = ‖zk−1‖ = ‖zQ‖. It suffices therefore to show that R(k, n) ≤
R2(k, n).

We may apply the induction hypothesis to Q as k-sub-simplex of Qn−1, keeping in mind
that B̄(zn−1, rn−1) has radius rn−1 (and not radius 1). Taking the scaling factor rn−1 into
consideration, the inductive hypothesis reads as follows:

R(k, n− 1) ≤ rn−1 ·R2(k, n− 1) (15)

Let z0 be a vertex in Q. The rest of the proof, which is illustrated in Figure 9, makes use
of the fact that the triangles induced by z0, zn−1, zn and zk−1, zn−1, zn, respectively, have both
a right angle at zn−1. The Pythagorean Law, applied to both triangles, yields:

r2
n−1 = 1− ‖zn−1‖2 (16)

R2(k, n) = R2(k, n− 1) + ‖zn−1‖2 (17)

In combination with equations (15) and (14), we get

R2(k, n) ≤ r2
n−1R

2
2(k, n− 1) + ‖zn−1‖2

= (1− ‖zn−1‖2)R2
2(k, n− 1) + ‖zn−1‖2

≤
(

1− 1
n2

)
R2

2(k, n− 1) +
1
n2

= R2
2(k, n).
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The last inequality holds because (1−‖zn−1‖2)R2
2(k, n−1)+‖zn−1‖2 is a convex combination

of R2
2(k, n−1) and 1 and R2

2(k, n−1) ≤ 1. This convex combination is maximized when ‖zn−1‖2

equals its upper bound 1/n2. The last equality (expressing R2(k, n) in terms of R2(k, n− 1)) is
obtained by a straightforward calculation that uses equation (7). It follows from our calculations
that R(k, n) ≤ R2(k, n), which concludes the proof.

zk−1z0

rn−1

zn

‖zn−1‖

R(k, n− 1)

zn−1

R(k, n)

Figure 9: Two triangles (with a right angle at zn−1, respectively) induced by the center zn of
an n-dimensional simplex Qn and the centers of some sub-simplexes of Qn. Serpentine lines
indicate segments of length 1.

Finally, we would like to mention that the upper bound on ‖zQ‖ given in Lemma 5.16 is
tight: if Q is a k-sub-simplex of the regular simplex with n + 1 vertices residing on Sn, then
‖zQ‖ = R2(k, n). We omit the straightforward inductive proof of this claim.
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